On the Ramsey Numbers for Bipartite Multigraphs

2003 
A coloring of a complete bipartite graph is shuffle-preserved if it is the case that assigning a color $c$ to edges $(u, v)$ and $(u', v')$ enforces the same color assignment for edges $(u, v')$ and $(u',v)$. (In words, the induced subgraph with respect to color $c$ is complete.) In this paper, we investigate a variant of the Ramsey problem for the class of complete bipartite multigraphs. (By a multigraph we mean a graph in which multiple edges, but no loops, are allowed.) Unlike the conventional m-coloring scheme in Ramsey theory which imposes a constraint (i.e., $m$) on the total number of colors allowed in a graph, we introduce a relaxed version called m-local coloring which only requires that, for every vertex $v$, the number of colors associated with $v$'s incident edges is bounded by $m$. Note that the number of colors found in a graph under $m$-local coloring may exceed m. We prove that given any $n \times n$ complete bipartite multigraph $G$, every shuffle-preserved $m$-local coloring displays a monochromatic copy of $K_{p,p}$ provided that $2(p-1)(m-1) \lceil \frac{n}{m} \rceil$. Finally, we give a generalization for $k$-partite graphs and a method applicable to general graphs. Many conclusions found in $m$-local coloring can be inferred to similar results of $m$-coloring.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    1
    Citations
    NaN
    KQI
    []