Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey.
2021
Objective Previous studies demonstrated the possibility to fabricate stereo-electroencephalography (SEEG) probes with high channel count and great design freedom, which incorporate macro- as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials and multi-unit activity in the macaque monkey as early as one hour after implantation, yielding stable single-unit activity for up to 26 days after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human applications, safety data are needed. Thus, in the present study we evaluate the biocompatibility of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site. Approach Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time. Main results The size of the region where neurons cannot be detected did not exceed the size of the probe, indicating that a complete loss of neuronal cells is only present where the probe was physically positioned in the brain. Furthermore, around the probe shank, we observed a slightly reduced number of neurons within a radius of 50 µm and a modest increase in the number of astrocytes within 100 µm. Significance In the light of previous electrophysiological findings, the present biocompatibility data suggest the potential usefulness and safety of this probe for human applications.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
39
References
3
Citations
NaN
KQI