Cost-effectiveness analysis of genotype-guided treatment allocation in patients with alcohol use disorders using naltrexone or acamprosate, using a modeling approach

2018 
Alcohol use disorders (AUD) are a major contributor to the global burden of disease, and have huge societal impact. Some studies show that AUD patients carrying the G-allele of the OPRM1 variant c.118A>G respond better to naltrexone, resulting in reduced relapse rates compared to carriers of the AA genotype. Genotype-guided treatment allocation of these patients carrying a G-allele to naltrexone could potentially improve the treatment outcome. However, cost-effectiveness of this strategy should be investigated before considering clinical implementation. We, therefore, evaluated costs and Quality-Adjusted Life-Years (QALYs), using a modelling approach, from an European perspective, of genotype-guided treatment allocation (G-allele carriers receiving naltrexone; AA homozygotes acamprosate or naltrexone) compared to standard care (random treatment allocation to acamprosate or naltrexone), by using a Markov model. Genotype-guided treatment allocation resulted in incremental costs of EUR 66 (95% CI -28 to 149) and incremental effects of 0.005 QALYs (95% CI 0.000-0.011) per patient (incremental cost-effectiveness ratio of EUR 13,350 per QALY). Sensitivity analyses showed that the risk ratio to relapse after treatment allocation had the largest impact on the cost-effectiveness. Depending on the willingness to pay for a gain of one QALY, probabilities that the intervention is cost-effective varies between 6 and 79%. In conclusion, pharmacogenetic treatment allocation of AUD patients to naltrexone, based on OPRM1 genotype, can be a cost-effective strategy, and could have potential individual and societal benefits. However, more evidence on the impact of genotype-guided treatment allocation on relapse is needed to substantiate these conclusions, as there is contradictory evidence about the effectiveness of OPRM1 genotyping.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []