Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement.

2020 
Thermal turbulence is well known as a potent means to convey heat across space by a moving fluid. The existence of the boundary layers near the plates, however, bottlenecks its heat-exchange capability. Here, we conceptualize a mechanism of thermal vibrational turbulence that breaks through the boundary-layer limitation and achieves massive heat-transport enhancement. When horizontal vibration is applied to the convection cell, a strong shear is induced to the body of fluid near the conducting plates, which destabilizes thermal boundary layers, vigorously triggers the eruptions of thermal plumes, and leads to a heat-transport enhancement by up to 600%. We further reveal that such a vibration-induced shear can very efficiently disrupt the boundary layers. The present findings open a new avenue for research into heat transport and will also bring profound changes in many industrial applications where thermal flux through a fluid is involved and the mechanical vibration is usually inevitable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    36
    Citations
    NaN
    KQI
    []