Tailoring P2/P3 Biphases of Layered Na x MnO 2 by Co Substitution for High‐Performance Sodium‐Ion Battery

2021 
P-type layered oxide is a promising cathode candidate for sodium-ion batteries (SIBs), but faces the challenge of simultaneously realizing high rate capability and long cycle life. Herein, Co-substituted Nax MnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying-annealing strategy. The optimized P2/P3-Na0.67 Mn0.64 Co0.30 Al0.06 O2 cathode delivers an excellent rate capability of 83 mA h g-1 at a high current density of 1700 mA g-1 (10 C), and an outstanding cycling stability over 500 cycles at 1000 mA g-1 . This excellent performance is attributed to the unique P2/P3 biphases with stable crystal structures and fast Na+ diffusion between open prismatic Na sites. Moreover, operando X-ray diffraction is applied to explore the structural evolution of Na0.67 Mn0.64 Co0.30 Al0.06 O2 during the Na+ extraction/insertion processes, and the P2-P2' phase transition is effectively suppressed. Operando Raman technique is utilized to explore the structural superiority of P2/P3 biphase cathode compared with pure P2 or P3 phase. This work highlights precisely tailoring the phase composition as an effective strategy to design advanced cathode materials for SIBs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    2
    Citations
    NaN
    KQI
    []