Efficiency of MAPbI3-Based Planar Solar Cell Analyzed by Its Thickness-Dependent Exciton Formation, Morphology, and Crystallinity

2019 
In spite of the impressive progresses regarding perovskite-type solar cells, a clear understanding about underlying mechanisms therein is still sparse, especially because of the absence of spatially resolved device characteristics which should be linked to exciton formation efficiency, morphology, and crystallinity being estimated as functions of positions within active layers. Here, the planar CH3NH3PbI3 (MAPbI3) perovskite solar cells (PeSCs) with ZnO as the electron-transporting layer (ETL) were fabricated. By varying the wide range of MAPbI3 active-layer thickness, we estimate their device parameters and external quantum efficiencies in addition to internal absorption spectra (Q) by means of the transfer matrix method. Furthermore, the spectrally and spatially resolved internal quantum efficiencies (IQEs) as a function of the active-layer thickness within PeSCs were calculated, and the relationship between IQE and device parameters extracted from the current–voltage (J–V) behaviors was discussed. It w...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []