Biomechanical analysis of wheelchair athletes with paraplegia during cross-training exercises.

2021 
Context Extreme conditioning programs (ECPs), such as CrossFit®, are a relatively new method of fitness with rapid growth in individuals with paraplegia. However, it is unknown if wheelchair users are at an additional risk of musculoskeletal injury during these exercises. Biomechanical characterization is necessary to determine the safety and efficacy of ECPs as an exercise modality for wheelchair users with paraplegia. Objective To characterize the three-dimensional (3-D) thorax and upper extremity joint kinematics of paraplegic wheelchair athletes during exercises commonly prescribed as part of ECPs. Design Observational study. Participants Three male wheelchair athletes, average age of 37.1 ± 4.6 years, with spinal cord injury levels of T8, L2, and T10, with varying exercise experience. Methods 3-D movement was acquired using motion capture during the performance of four exercises: battle ropes, sled pull, overhead press, and sledgehammer swing. A custom upper extremity inverse kinematics model was applied to compute 3-D joint angles. Outcome measures 3-D peak thorax, glenohumeral, elbow, and wrist joint angles and ranges of motion (ROM), Visual Analog Scale (VAS), and Borg Scale of Perceived Exertion. Results Large joint motions were required for the exercises, at times demanding extreme shoulder and/or wrist flexion and extension, abduction, and external rotation, which are concerning for injury risk in wheelchair users. Participants, however, were able to perform the exercises pain free. Conclusion These quantitative findings highlight that wheelchair athletes may be exposed to potentially injurious positions during common ECP exercises. These findings provide insight that may lead to improved clinical guidelines for prescription and training of exercise regimens, particularly involving ECPs, for wheelchair users.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []