A theoretical model for horizontal convection at high Rayleigh number

2007 
We present a simple flow model and solution to describe ‘horizontal convection’ driven by a gradient of temperature or heat flux along one horizontal boundary of a rectangular box. Following laboratory observations of the steady-state convection, the model is based on a localized vertical turbulent plume from a line or point source that is located anywhere within the area of the box and that maintains a stably stratified interior. In contrast to the ‘filling box’ process, the convective circulation involves vertical diffusion in the interior and a stabilizing buoyancy flux distributed over the horizontal boundary. The stabilizing flux forces the density distribution to reach a steady state. The model predictions compare well with previous laboratory data and numerical solutions. In the case of a point source for the plume (the case which best mimics the localized sinking in the large-scale ocean overturning) the thermal boundary layer is much thicker than that given by the two-dimensional boundary layer scaling of H. T. Rossby (T ellus, vol. 50, 1965, p. 242).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    39
    Citations
    NaN
    KQI
    []