Characterization of the metabolic pathway and catabolic gene expression in biphenyl degrading marine bacterium Pseudomonas aeruginosa JP-11.
2016
Abstract Metabolic pathway of biphenyl assimilation and the catabolic gene expression in a marine bacterium Pseudomonas aeruginosa JP-11, isolated from the coastal sediments of Odisha, India have been studied. This strain utilized 98.86% ± 2.29% of biphenyl within 72 h when supplied as the sole source of carbon, however, preferential utilization of glucose was observed over catechol and biphenyl when grown in a complex medium. Combination of chromatographic and spectrophotometric techniques confirmed the catechol pathway and identified 2-Hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate as the intermediate metabolic product. Assimilation of biphenyl was initiated by its dioxygenation, forming cis-2, 3-dihydro-2, 3-dihydroxybiphenyl subsequently transformed to 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate. In the lower pathway, cis-1, 6-dihydroxy-2, 4-cyclohexadiene-1-carboxylic acid was detected which formed catechol before entering into the Krebs cycle. Detection of key enzyme catechol-1, 2-dioxygenase in the cell-free extract of P. aeruginosa JP-11 supported the proposed degradation pathway. The primary enzyme for biphenyl assimilation, biphenyl dioxygenase encoded by bphA gene was found in the genome of the isolate. On increasing biphenyl stress (50, 100, 150 and 200 mg L −1 ), bphA gene showed a significant (P rhlAB was amplified. This gene also showed a significant (P
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
60
References
25
Citations
NaN
KQI