A computation method of dual-energy x-ray imaging

2006 
Dual-energy X-ray imaging is an important method of medical imaging, capable of not only obtaining spatial information of imaging object but also disclosing its chemical components, and has many applications in clinic. The current computation methods of dual-energy imaging are still based on the model of mono-energy spectrum imaging with some linear calibration, while they are incapable to reflect correctly the physical characteristics of dual-energy imaging and obstruct deeper research in this field. The article presents a new medical X-ray imaging model in accordance with physics of imaging and its corresponding computational method. The computation process includes two steps: first, to compute two attenuation parameters that have clear physical meaning: equivalent electron density and attenuation parameter of photoemission; then to compute the components of high- and low-density mass through a group of simple equation with two variables. Experiments showed that such method has quite a satisfactory precision in theory, that is, the solutions of parameters under different exposure voltages and thickness of tissue for several main tissues of human body are much low in deviations, whose quotient of standard deviation divided by mean are mostly under 0.1%, and at most 0.32%. The method provides not only a new computational way for dual-energy X-ray imaging, but also a feasible analysis for its nature. In addition, the method can be used to linearly rectify data of dual-energy CT and analyze the chemical component of reconstructed object by means of parameters clear in physics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []