Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma
2021
SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations and may reduce efficacy of current vaccines targeted at the spike glycoprotein. We re-cently described the emergence of VOC in South Africa (501Y.V2 or PANGO lineage B.1.351) with mutations in the spike receptor-binding domain (RBD) and N-terminal domain (NTD). Here, using a live virus neutralization assay (LVNA), we compared neutralization of a first wave virus (B.1.1.117) versus the 501Y.V2 variant using plasma collected from adults hospitalized with COVID-19 from two South African infection waves, with the second wave dominated by 501Y.V2 infections. Sequencing demonstrated that infections in first wave plasma donors were with viruses harbouring none of the 501Y.V2-defining RBD or NTD mutations, except for one with E484K. 501Y.V2 virus was effectively neutralized by plasma from second wave infections and first wave virus was effectively neutralized by first wave plasma. In cross-neutralization, 501Y.V2 virus was poorly neutralized by first wave plasma, with an 8.4-fold drop in neutralization relative to first wave virus and a 15.1-fold drop relative to 501Y.V2 neutralization by second wave plasma. In contrast, second wave plasma neutralization of first wave virus was more effective, showing 4.1-fold decline relative to 501Y.V2 virus neutralization and 2.3-fold decline relative to first wave plasma neutralization. While we only tested one plasma elicited by E484K alone, this potently neutralized both variants. The observed effective neutralization of first wave virus by 501Y.V2 infection elicited plasma provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
123
Citations
NaN
KQI