Fast Neutrino Flavor Conversion: Collective Motion vs. Decoherence

2019 
In an interacting neutrino gas, flavor coherence becomes dynamical and can propagate as a collective mode. In particular, tachyonic instabilities can appear, leading to "fast flavor conversion" that is independent of neutrino masses and mixing angles. On the other hand, without neutrino-neutrino interaction, a prepared wave packet of flavor coherence simply dissipates by kinematical decoherence of infinitely many non-collective modes. We reexamine the dispersion relation for fast flavor modes and show that for any wavenumber,there exists a continuum of non-collective modes besides a few discrete collective ones. So for any initial wave packet, both decoherence and collective motion occurs, although the latter typically dominates for a sufficiently dense gas. We derive explicit eigenfunctions for both collective and non-collective modes. If the angular mode distribution of electron-lepton number crosses between positive and negative values, two non-collective modes can merge to become a tachyonic collective mode. We explicitly calculate the interaction strength for this critical point. As a corollary we find that a single crossing always leads to a tachyonic instability. For an even number of crossings, no instability needs to occur.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    18
    Citations
    NaN
    KQI
    []