Ultracold atom interferometry in space.

2021 
Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne matter-wave interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. On a sounding rocket, we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work establishes matter-wave interferometry in space with future applications in fundamental physics, navigation and Earth observation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []