Loss of the H4 lysine methyltransferase KMT5B drives tumorigenic phenotypes by depleting H3K27me3 at loci otherwise retained in H3K27M mutant DIPG cells

2021 
DIPG are characterised by histone H3K27M mutations, resulting in global loss of the repressive mark H3K27me3, although certain key loci are retained. We recently identified subclonal loss-of-function mutations in the H4 lysine methyltransferase KMT5B to be associated with enhanced invasion/migration, but the mechanism by which this occurred was unclear. Here we use integrated ChIP-seq, ATAC-seq and RNA-seq on patient-derived, subclonal and CRISPR-Cas9-KD DIPG cells to show that loss of KMT5B/C causes depletion of these retained H3K27me3 loci via changes in chromatin accessibility, causing a raft of transcriptional changes which promote tumorigenesis. De-repression occurred at bivalent loci marked by H3K4me3, driving increased transcriptional heterogeneity and elevated gene expression associated with increased invasion, abrogated DNA repair and mesenchymal transition, along with a markedly altered secretome. These data suggest a previously unrecognised trans-histone (H4/H3) interaction in DIPG cells with a potentially profound effect on their diffusely infiltrating phenotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []