DNA-Directed Patterning for Versatile Validation and Characterization of a Lipid-Based Nanoparticle Model of SARS-CoV-2

2021 
Lipid-based nanoparticles have risen to the forefront of the COVID-19 pandemic—from encapsulation of vaccine components to modeling the virus, itself. Their rapid development in the face of the volatile nature of the pandemic requires high-throughput, highly flexible methods for characterization. DNA-directed patterning is a versatile method to immobilize and segregate lipid-based nanoparticles for subsequent analysis. DNA-directed patterning selectively conjugates oligonucleotides onto a glass substrate and then hybridizes them to complementary oligonucleotides tagged to the liposomes, thereby patterning them with great control and precision. The power of this method is demonstrated by characterizing a novel recapitulative lipid-based nanoparticle model of SARS-CoV-2 —S-liposomes— which present the SARS-CoV-2 spike (S) protein on their surfaces. Patterning of a mixture of S-liposomes and liposomes that display the tetraspanin CD63 into discrete regions of a substrate is used to show that ACE2 specifically binds to S-liposomes. Importantly, DNA-directed patterning of S-liposomes is used to verify the performance of a commercially available neutralizing antibody against the S protein. Ultimately, the introduction of S-liposomes to ACE2-expressing cells demonstrates the biological relevance of DNA-directed patterning. Overall, DNA-directed patterning enables a wide variety of custom assays for the characterization of any lipid-based nanoparticle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []