Detecting Intralabyrinthine Pressure Increase by Postural Manipulation with Wideband Tympanometry and Distortion Product Otoacoustic Emissions

2021 
Objective Intracranial pressure increase is known to affect inner ear pressure through the cochlear and vestibular aqueducts. This finding forms a good model for inner ear pressure studies. Standard techniques used to detect this pressure increase are neither reliable nor easily repeatable or cheap. Studies with immitancemetry and otoacoustic emissions have been giving hopeful results. This study aims to confirm the results in the literature with wideband tympanometry and add a new parameter of otoacoustic emissions to inner ear pressure testing. Methods Wideband tympanometry (WBT) and distortion product otoacoustic emissions (DPOAE) tests were applied to 40 healthy participants in sitting, supine, and Trendelenburg positions. DPOAE were measured under ambient or peak pressure. Resonance frequency, tympanic peak pressure, 1000, 1500, 2000, 3000, 4000, and 6000 Hz frequencies in DPOAE were measured. Results The increase in the tympanic peak pressure and the decrease in resonance frequency (RF) due to position change were found statistically significant (p<0.01). Signal noise ratio (SNR) decrease at 1 kHz frequency and SNR increase at 2, 3, 6 kHz in the normal protocol, SNR decrease at 1 kHz in the pressurized protocol were found statistically significant (p<0.01). Conclusion RF in WBT and 1 kHz DPOAE SNR parameters were found useful in supporting the diagnosis in pathologies that increase intracranial pressure and inner ear pressure. Future research may ease their widespread use in clinical practice as they are non-invasive and rapidly applicable.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []