Globally Suppressed Dynamics in Ion-Doped Polymers

2018 
We investigate how ion–polymer complexation suppresses molecular motion in conventional polymer electrolytes using molecular dynamics (MD) simulations of lithium hexafluorophosphate in poly(ethylene oxide) and a modified Rouse model. The employed model utilizes an inhomogeneous friction distribution to describe ion–polymer interactions and provides an effective way to examine how ion–polymer interactions affect polymer motion. By characterizing the subdiffusive Li+ transport and polymer relaxation times at several salt concentrations, we observe that increases in local friction due to ion-polymer complexation are significantly smaller than previously assumed. We find that a Rouse-based model that only considers local increases in friction cannot simultaneously capture the magnitude of increased polymer relaxation times and the apparent power-law exponent for Li+ subdiffusion observed in MD simulations. This incompatibility is reconciled by augmenting the modified Rouse model with a term that increases the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    18
    Citations
    NaN
    KQI
    []