A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field from DWI

2003 
In this paper, we present a novel constrained variational principle for simultaneous smoothing and estimation of the diffusion tensor field from diffusion weighted imaging (DWI). The constrained variational principle involves the minimization of a regularization term in an L p norm, subject to a nonlinear inequality constraint on the data. The data term we employ is the original Stejskal-Tanner equation instead of the linearized version usually employed in literature. The original nonlinear form leads to a more accurate (when compared to the linearized form) estimated tensor field. The inequality constraint requires that the nonlinear least squares data term be bounded from above by a possibly known tolerance factor. Finally, in order to accommodate the positive definite constraint on the diffusion tensor, it is expressed in terms of cholesky factors and estimated. variational principle is solved using the augmented Lagrangian technique in conjunction with the limited memory quasi-Newton method. Both synthetic and real data experiments are shown to depict the performance of the tensor field estimation algorithm. Fiber tracts in a rat brain are then mapped using a particle system based visualization technique.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    30
    Citations
    NaN
    KQI
    []