Drying of particulate materials in draft tube conical spouted beds: Energy analysis

2021 
Abstract Drying is a highly energy-intensive process and dryers are considered one of the most energy-consuming industrial equipment. Nevertheless, the energy contribution of the draft tube in the spouted bed has hardly been studied. This equipment is widely recognized as a versatile and efficient gas-solid contact method for several chemical and physical operations. Thus, the objective of this study is to perform an energy analysis of a draft tube conical spouted bed for particulate materials. Drying of alumina, soybean, and barley has been performed with three different configurations: without tube and with nonporous and open-sided tubes. Energy Efficiency, Drying Efficiency, and Specific Energy Consumption have been the parameters considered for energy analysis. The nonporous tube provided the best energy performance for diffusive materials, such as barley and soybean particles, with reductions in the energy consumption in the range from 31.60% to 42.40% in relation to configuration without tube. The configurations with open-sided tube and without tube provided similar energy performance for all materials. Therefore, this study contributes to support that draft tubes are promising devices for improving energy issues in the spouted bed, mainly in the processing of low moisture materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []