Design and proof-of-concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain
2021
Development of effective vaccines against Coronavirus Disease 2019 (COVID-19) is a global imperative. Rapid immunization of the world human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and many different vaccine approaches are being pursued to meet this task. Engineered filamentous bacteriophage (phage) have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the design, development, and initial evaluation of targeted phage-based vaccination approaches against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) by using dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. Towards a unique phage- and AAVP-based dual-display candidate approach, we first performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein for display on the recombinant major capsid coat protein pVIII. Targeted phage particles carrying one of these epitopes induced a strong and specific humoral response. In an initial experimental approach, when these targeted phage particles were further genetically engineered to simultaneously display a ligand peptide (CAKSMGDIVC) on the minor capsid protein pIII, which enables receptor-mediated transport of phage particles from the lung epithelium into the systemic circulation (termed "dual-display"), they enhanced a systemic and specific spike (S) protein-specific antibody response upon aerosolization into the lungs of mice. In a second line of investigation, we engineered targeted AAVP particles to deliver the entire S protein gene under the control of a constitutive cytomegalovirus (CMV) promoter, which induced tissue-specific transgene expression stimulating a systemic S protein-specific antibody response. As proof-of-concept preclinical experiments, we show that targeted phage- and AAVP-based particles serve as robust yet versatile enabling platforms for ligand-directed immunization and promptly yield COVID-19 vaccine prototypes for further translational development. SignificanceThe ongoing COVID-19 global pandemic has accounted for over 2.5 million deaths and an unprecedented impact on the health of mankind worldwide. Over the past several months, while a few COVID-19 vaccines have received Emergency Use Authorization and are currently being administered to the entire human population, the demand for prompt global immunization has created enormous logistical challenges--including but not limited to supply, access, and distribution--that justify and reinforce the research for additional strategic alternatives. Phage are viruses that only infect bacteria and have been safely administered to humans as antibiotics for decades. As experimental proof-of-concept, we demonstrated that aerosol pulmonary vaccination with lung-targeted phage particles that display short epitopes of the S protein on the capsid as well as preclinical vaccination with targeted AAVP particles carrying the S protein gene elicit a systemic and specific immune response against SARS-CoV-2 in immunocompetent mice. Given that targeted phage- and AAVP-based viral particles are sturdy yet simple to genetically engineer, cost-effective for rapid large-scale production in clinical grade, and relatively stable at room temperature, such unique attributes might perhaps become additional tools towards COVID-19 vaccine design and development for immediate and future unmet needs.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
68
References
0
Citations
NaN
KQI