Differential Involvement of Histidine Kinase Receptors in Pseudohyphal Development, Stress Adaptation, and Drug Sensitivity of the Opportunistic Yeast Candida lusitaniae

2007 
Fungal histidine kinase receptors (HKRs) sense and transduce many extracellular signals. We investigated the role of HKRs in morphogenetic transition, osmotolerance, oxidative stress response, and mating ability in the opportunistic yeast Candida lusitaniae. We isolated three genes, SLN1, NIK1, and CHK1, potentially encoding HKRs of classes VI, III, and X, respectively. These genes were disrupted by a transformation system based upon the “URA3 blaster” strategy. Functional analysis of disruptants was undertaken, except for the sln1 nik1 double mutant and the sln1 nik1 chk1 triple mutant, which are not viable in C. lusitaniae. The sln1 mutant revealed a high sensitivity to oxidative stress, whereas both the nik1 and chk1 mutants exhibited a more moderate sensitivity to peroxide. We also showed that the NIK1 gene was implicated in phenylpyrrole and dicarboximide compound susceptibility while HKRs seem not to be involved in resistance toward antifungals of clinical relevance. Concerning mating ability, all disruptants were still able to reproduce sexually in vitro in unilateral or bilateral crosses. The most important result of this study was that the sln1 mutant displayed a global defect of pseudohyphal differentiation, especially in high-osmolarity and oxidative-stress conditions. Thus, the SLN1 gene could be crucial for the C. lusitaniae yeast-to-pseudohypha morphogenetic transition. This implication is strengthened by a high level of SLN1 mRNAs revealed by semiquantitative reverse transcription-PCR when the yeast develops pseudohyphae. Our findings highlight a differential contribution of the three HKRs in osmotic and oxidant adaptation during the morphological transition in C. lusitaniae.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    21
    Citations
    NaN
    KQI
    []