Modification of Rifamycin Polyketide Backbone Leads to Improved Drug Activity against Rifampicin-resistant Mycobacterium tuberculosis

2014 
Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    33
    Citations
    NaN
    KQI
    []