Machine vision techniques for motorcycle safety helmet detection

2013 
Although motorcycle safety helmets are known for preventing head injuries, in many countries, the use of motorcycle helmets is low due to the lack of police power to enforcing helmet laws. This paper presents a system which automatically detect motorcycle riders and determine that they are wearing safety helmets or not. The system extracts moving objects and classifies them as a motorcycle or other moving objects based on features extracted from their region properties using K-Nearest Neighbor (KNN) classifier. The heads of the riders on the recognized motorcycle are then counted and segmented based on projection profiling. The system classifies the head as wearing a helmet or not using KNN based on features derived from 4 sections of segmented head region. Experiment results show an average correct detection rate for near lane, far lane, and both lanes as 84%, 68%, and 74%, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    44
    Citations
    NaN
    KQI
    []