Highly Sensitive, Selective, and Flexible NO2 Chemiresistors Based on Multilevel Structured Three-Dimensional Reduced Graphene Oxide Fiber Scaffold Modified with Aminoanthroquinone Moieties and Ag Nanoparticles

2019 
Highly sensitive, selective, and room-temperature-performing gas sensors have always been the pursuit in the sensing field for practical applications. However, the existing gas sensors can seldom satisfy the aforementioned requirements. Here, we integrate zero-dimensional Ag nanoparticles (AgNPs), one-dimensional polymer fibers, and two-dimensional aminoanthroquinone-functionalized reduced graphene oxide (AQRGO) sheets into a three-dimensional sensing scaffold (AgNP-3D-AQRGO) for high-performance NO2 sensing. The AQ moieties and AgNPs are decorated onto the RGO sheets through a wet chemical route. Electrospinning and self-assembly techniques are employed to assemble the polymer fibers and the functional RGO sheets into a three-dimensional scaffold. The resulting AgNP-3D-AQRGO-based gas sensor can perform at room temperature and exhibits excellent sensing performance for NO2, including an ultrahigh sensitivity (10.3 ppm–1), an ultralow limit of detection (0.6 ppb), and an extremely remarkable selectivity t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    19
    Citations
    NaN
    KQI
    []