Temperature dependent droplet impact dynamics on flat and textured surfaces

2012 
Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling, and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially on hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures combined with an increased work of adhesion can explain the decreased retraction. The present findings serve as a starting point to guide further studies of dynamic fluid-surface interaction at various temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    73
    Citations
    NaN
    KQI
    []