Superconductor-normal metal quantum phase transition in dissipative and non-equilibrium systems

2013 
Abstract In physical systems, coupling to the environment gives rise to dissipation and decoherence. For nanoscopic materials, this may be a determining factor of their physical behaviour. However, even for macroscopic many-body systems, if the strength of this coupling is sufficiently strong, their ground-state properties and phase diagram may be severely modified. Also dissipation is essential to allow a system in the presence of a time-dependent perturbation to attain a steady, time-independent state. In this case, the non-equilibrium phase diagram depends on the intensity of the perturbation and on the strength of the coupling of the system to the outside world. In this paper, we investigate the effects of both dissipation and time-dependent external sources in the phase diagram of a many-body system at zero and finite temperatures. For concreteness, we consider the specific case of a superconducting layer under the action of an electric field and coupled to a metallic substrate. The former arises fro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    2
    Citations
    NaN
    KQI
    []