Влияние газотрансмиттера сероводорода на микрореологические свойства эритроцитов здоровых лиц и больных сахарным диабетом второго типа

2020 
Aim: to study the effect of donor gasotransmitter (GT) hydrogen sulphide (NaHS) and the activator of its intracellular synthesis (L-cysteine) on the red blood cells (RBCs) microrheological characteristics in normal and diabetes mellitus type 2 (DM-2). Materials and methods. RBCs of 16 healthy individuals and 16 patients with DM-2 were incubated with hydrogen sulfide donor — sodium hydrosulfide (NaHS) in concentrations of 10, 50 and 100 μmol and a stimulator of its endogenous synthesis — L-cyste- ine (10, 50 and 100 μmol). ATP-dependent potassium channels were blocked by glibenclamide (50 μmol). Soluble guanylate cy- clase was inhibited using 0.5 μmol ODQ (1H-[1,2,4]-oxadiazolo[4,3-a] quinoxalin-l-one). Deformability (RBCD) and RBCs aggrega- tion were recorded. Results. Under the influence of NaHS, dose-dependent positive changes in RBCs microrheology were observed. Cellular microrhe- ological responses to GT donor were more pronounced in healthy individuals than in patients with DM-2. A similar pattern was observed when RBCs were exposed to L-cysteine. Preincubation with glibenclamide did not eliminate the positive effect of GT donor on RBCs microrheology. Whereas inhibition of soluble guanylate cyclase with the help of ODQ completely eliminated posi- tive changes in RBCD under the action of GT and significantly reduced its effect on aggregation. Conclusion. Thus, hydrogen sulfide as a gasotransmitter improves RBCs microrheology. With the same concentration of hydrogen sulphide donor (NaHS) and its synthesis stimulator (L-cysteine), more pronounced shifts in the microrheological parameters of erythrocytes are observed in healthy individuals as compared with DM-2 patients. REFERENCES 1. Bor-Kucukatay M., Wenby R.B., Meiselman H.J., Baskurt O.K. Ef- fects of nitric oxide on red blood cell deformability. Am J Physiol Heart Circ Physiol. 2003;284(5):H1577–84. DOI: 10.1152/ajp- heart.00665.2002. 2. Popel A.S., Johnson P.C. Microcirculation and hemorheology. Annu Rev Fluid Mech. 2005;37:43–69. DOI: 10.1146/annurev. fluid.37.042604.133933. 3. Hamlin S.K., Benedik P.S. Basic concepts of hemorheology in microvascular hemodynamics. Crit Care Nurs Clin North Am. 2014;26(3):337–44. DOI: 10.1016/j.ccell.2014.04.005. 4. Sprague R.S., Ellsworth M.L., Stephenson A.H., Lonigro A.J. Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol Cell Physiol. 2001;281(4):C1158–64. DOI: 10.1152/ajpcell.2001.281.4.C1158. 5. Mustafa A.K., Gadalla M.M., Snyder S.H. Signaling by gasotrans- mitters. Sci Signal. 2009;2(68):re2. DOI: 10.1126/scisignal.268re2. 6. Farrugia G., Szurszewski J.H. Carbon monoxide, hydrogen sul- fide, and nitric oxide as signaling molecules in the gastrointesti- nal tract. Gastroenterology. 2014;147(2):303–13. DOI: 10.1053/j.gastro.2014.04.041.7. Wang R. Gasotransmitters: growing pains and joys. Trends Biochem Sci. 2014;39(5):227–32. DOI: 10.1016/j.tibs.2014.03.003. 8. Kleinbongard P., Keymel S., Kelm M. New functional aspects of the L-argininenitric oxide metabolism within the circulating blood. Thromb Haemost. 2007;98(5):970–4.9. Korbut R., Gryglewski R.J. The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats. J Physiol Pharmacol. 1996;47(4):591–9.10. Uyuklu M., Meiselman H.J., Baskurt O.K. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical proper- ties by nitric oxide. Nitric Oxide. 2009;21(1):20–6. DOI: 10.1016/j. niox.2009.03.004. 11. Grau M., Pauly S., Ali J. et al. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One. 2013;8(2):e56759. DOI: 10.1371/journal.pone.0056759. Wallace J.L., Ianaro A., Flannigan K.L., Cirino G. Gaseous mediators in resolution of inflammation. Semin Immunol. 2015;27(3):227–33. DOI: 10.1016/j.smim.2015.05.004. Van den Born J.C., Hammes H.P., Greffrath W. et al; DFG GRK International Research Training Group 1874 Diabetic Microvas- cular Complications (DIAMICOM). Gasotransmitters in vascu- lar complications of diabetes. Diabetes. 2016;65(2):331–45. DOI: 10.2337/db15–1003. 14. Truss N.J., Warner T.D. Gasotransmitters and platelets. Phar- macol Ther. 2011;132(2):196–203. DOI: 10.1016/j.phar- mthera.2011.07.001. 15. Muravyov A.V., Tikhomirova I.A., Avdonin P.V. et al. Cellular models of erythrocytes for studying the effect of gasotransmitters on their microrheology. J Cell Biotechnol. 2019;5(1):3–10. DOI: 10.3233/jcb-189009. 16. Artmann G.M. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber. Biorhe- ology. 1995;32(5):553–70. DOI: 10.1016/0006–355X(95)00032–5. 17. Zhao W., Zhang J., Lu Y., Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 2001;20(21):6008–16. DOI: 10.1093/emboj/20.21.6008. 18. Green B.D., Hand K.V., Dougan J.E. et al. GLP-1 and related peptides cause concentration-dependent relaxation of rat aorta through a pathway involving KATP and cAMP. Arch Biochem Biophys. 2008;478(2):136–42. DOI: 10.1016/j.abb.2008.08.001. 19. Coletta C., Papapetropoulos A., Erdelyi et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogen- esis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA. 2012;109(23):9161–6. DOI: 10.1073/pnas.1202916109. 20. Ishibashi Y., Duncker D.J., Zhang J., Bache R.J. ATP-sensitive K + channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res. 1998;82(3):346–59. DOI: 10.1161/01.res.82.3.346. 21. Feelisch M., Kotsonis P., Siebe J. et al. The soluble guanylyl cy- clase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation. Mol Pharmacol. 1999;56(2):243–53. DOI: 10.1124/mol.56.2.243. 22. Derbyshire E.R., Marletta M.A. Structure and regulation of sol- uble guanylate cyclase. Annu Rev Biochem. 2012;81:533–9. DOI: 10.1146/annurev-biochem-050410–100030. 23. Wang R. Signal transduction and the gasotransmitters. NO, CO and H2S in biology and medicine. Totowa: Humana Press Inc., 2004. 377 p. 24. Muravyov A.V., Antonova N., Tikhomirova I.A. Red blood cell micromechanical responses to hydrogen sulphide and nitric ox- ide donors: Analysis of crosstalk of two gasotransmitters (H2S and NO). Series on Biomechanics. 2019;33(2):34–40.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []