Development of Mitochondria-Targeted Imaging Nanoplatforms by Incorporation of Fluorescent Carbon Quantum Dots.

2021 
Multifunctional nanoplatforms are promising scaffolds for biomedical applications such as bioimaging, chemical/biological sensors, drug delivery, and cancer diagnosis and/or treatments. Mitochondria play crucial roles in metabolism of eukaryotic cells; therefore, mitochondria-targeting molecule such as triphenylphosphonium (TPP) is attached onto the magnetic mesoporous silica nanoparticle (Fe3O4@mSiO2). In order to track the nanoparticles, fluorescent carbon quantum dots (CDs) were conjugated to the Fe3O4@mSiO2. The as-constructed Fe3O4@mSiO2-TPP/CQD nanoplatform showed minimal cytotoxicity in various cell lines such as A549, CHO, HeLa, SH-SY5Y, HFF, and HMEC-1. External magnetic field-assisted uptake of the nanoplatform by tumor cell has been achieved promptly. More importantly, conjugation with CQDs endows the nanoplatform multicolored fluorescence that can remain bright and stable inside cells for a long time. This nanoplatform provides a multifunctional platform in targeting, imaging, and agent delivery for mitochondria-related disease diagnosis and treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []