A natural mutation of the amino acid residue at position 60 destroys staphylococcal enterotoxin A murine T-cell mitogenicity.
1995
A variety of techniques have been used to identify the amino acid residues of bacterial superantigens involved in their interactions with major histocompatibility complex (MHC) class II and T-cell receptor (TCR). In this study, we isolated a naturally mutated staphylococcal enterotoxin A (SEA) from three different Staphylococcus aureus strains, in which the amino acid at position 60 has been changed from aspartic acid (D) to asparagine (N). We then studied the influence of this change on the immunological activities of SEA. Our results demonstrated that this mutation does not affect the capacity of SEA to bind MHC class II molecules and consequently activates human monocytes and peripheral blood lymphocytes. In contrast, mutated SEA failed to stimulate the proliferation of murine splenic lymphocytes of two different strains, and when presented by human MHC class II molecules, it also failed to activate murine cell line 3DT, which expresses the SEA-specific TCR V beta element (V beta 1). These results indicate that this mutation alters the interaction between SEA and murine TCR. The reactivity patterns of the mutated SEA with two specific anti-SEA monoclonal antibodies suggested that the observed effect of the isolated mutation in the murine system might be due to certain conformational changes in the SEA molecule introduced upon changing the D at position 60 to N. Site-directed mutagenesis of the N residue to D or to glycine reconstituted the ability of SEA to stimulate murine splenic lymphocytes. The different effects of this natural mutation at position 60 on the immunological activities of SEA with murine and human cells highlight the relevance of the affinity and avidity in SEA-TCR interactions in the function of different species or may reflect a difference in epitope specificity.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
13
Citations
NaN
KQI