Effect of Aromatic SAMs Molecules on Graphene/Silicon Schottky Diode Performance

2016 
Au/n-Si/Graphene/Au Schottky diodes were fabricated by transferring atmospheric pressure chemical vapor deposited (APCVD) graphene on silicon substrates. Graphene/n-Si interface properties were improved by using 5-[(3-methylphenyl)(phenyl) amino]isophthalic acid (MePIFA) and 5-(diphenyl)amino]isophthalic acid (DPIFA) aromatic self-assembled monolayer (SAM) molecules. The surface morphologies of modified and non-modified films were investigated by atomic force microscopy and scanning electron microscopy. The surface potential characteristics were obtained by Kelvin-probe force microscopy and found as 0.158 V, 0.188 V and 0,383 V as a result of SAMs modification. The ideality factors of n-Si/Graphene, n-Si/MePIFA/Graphene and n-Si/DPIFA/Graphene diodes were found as 1.07, 1.13 and 1.15, respectively. Due to the chain length of aromatic organic MePIFA and DPIFA molecules, also the barrier height φB values of the devices were decreased. While the barrier height of n-Si/Graphene diode was obtained as 0.931 eV, n-Si/MePIFA/Graphene and n-Si/DPIFA/Graphene diodes have barrier height of 0.820 and 0.720 eV, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []