Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells
2013
The band structure, quantum confinement of charge carriers, and their localization affect the optoelectronic properties of compound semiconductor heterostructures and multiple quantum wells (MQWs). We present here the results of a systematic first-principles based density functional theory (DFT) investigation of the dependence of the valence band offsets and band bending in polar and non-polar strain-free and in-plane strained heteroepitaxial InxGa1-xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with [12¯10]InGaN//[12¯10]GaN and [0001]InGaN//[0001]GaN epitaxial alignments, the valence band offset changes linearly from 0 to 0.57 eV as the In composition is varied from 0 (GaN) to 1 (InN). These offsets are relatively insensitive to the misfit strain between InGaN and GaN. On the other hand, for polar c-plane strain-free heterostructures with [101¯0]InGaN//[101¯0]GaN and [12¯10]InGaN//[12¯10]GaN epitaxial alignments, the valen...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
15
Citations
NaN
KQI