A Device-to-System Perspective Regarding Self-Heating Enhanced Hot Carrier Degradation in Modern Field-Effect Transistors: A Topical Review

2019 
As foreseen by Keyes in the late 1960s, the self-heating effect has emerged as an important concern for device performance, output power density, run-time variability, and reliability of modern field-effect transistors. The self-heating effect is aggravated as the device footprint scales down for higher level of integration (low-power devices) or as the devices are operated in ultrahigh voltage regimes (high-power devices). In this article, we focus on the implications of self-heating on hot carrier degradation (HCD) of modern transistors by integrating within a coherent theoretical framework a broad range of experimental data scattered in the literature. We explain why system integration exacerbates transistor self-heating, while high-frequency digital operation ameliorates it, suggesting an opportunity for co-optimization. We conclude this article by discussing the various material–device–system design strategies to reduce HCD and suggesting open problems for further research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    11
    Citations
    NaN
    KQI
    []