Design Methodology for Multipliers with Active Leakage and Dynamic Power Reduction

2012 
A novel design methodology for multipliers to reducing both active leakage and dynamic power using dynamic power gating is presented, where sleep transistors are inserted between the real and virtual ground rails of various parts of the multiplier which could be selectively turned on/off. On-chip sleep signals are generated from one input signal of the multiplier which has larger dynamic range. By detecting the magnitude of the input signal, the idle parts of the multiplier are identified and the power gating schemes are dynamically applied even when the multiplier is performing useful computation. Simulations show that the total power dissipation of the proposed multiplier could be reduced up to 39.3% in a typical DSP application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []