Development of Microturbocharger and Microcombustor for a Three-Dimensional Gas Turbine at Microscale

2002 
A microscale gas turbine is under development at Tohoku University in Japan. Current objective of the project is to reveal the performance of the gas turbine at microscale with optimum aerodynamic shape. Therefore the engine to be tested will be fabricated by machining using a micro-5-axis end mill to realize three-dimensional modeling. The first step of the development has been split into the development of microturbocharger and microcombustor, to prevent the problem of the heat flow effect pointed out in the previous study [1]. The heat flow from the combustor to compressor will become relatively large at microscale, and this will degrade the performance of the compressor. The goal of the first step of the development is to achieve the required performance of the components to realize the gas turbine cycle, without the heat effect. Those are, 62% compressor efficiency, 870,000 rpm shaft rotating speed, and the self sustained combustion. A microscale turbocharger has been designed. The compressor impeller of diameter 10mm is expected to produce a pressure ratio of 3, and 68% compressor adiabatic efficiency. The bearings to realize the design rotational speed are hydrodynamic type gas bearing. Fabrication of the herring-bone grooves have been attempted, and successfully formed on a cylindrical surface by new etching procedure. A technique to fabricate three-dimensional turbine impellers at microscale by powder sintering of ceramics has been demonstrated. A semi-microcombustor has been fabricated and shown successful performance by burning hydrogen fuel.Copyright © 2002 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    21
    Citations
    NaN
    KQI
    []