Analytical chemistry of the citrate process for flue gas desulfurization

1980 
The citrate process for flue gas desulfurization (FGD) is a product of continuing research by the US Bureau of Mines to meet the goal of minimizing the objectionable effects of minerals industry operations upon the environment. The reduction of SO/sub 2/ in solution by H/sub 2/S to produce elemental sulfur by the citrate process is extremely complex and results in solutions that contain at least nine different sulfur species. Process solution analysis is essential to a clear understanding of process chemistry and its safe, efficient operation. The various chemical species, the approximate ranges of their concentrations in citrate process solutions, and the analytical methods evolved to determine them are hydrogen sulfide (approx. 0M to 0.06M) by specific ion electrode, polysulfides (unknown) by ultraviolet (uv) spectrophotometry, elemental sulfur (approx. 0M to approx. 0.001M dissolved, approx. 0M to approx. 0.1M suspended) by uv spectrophotometry, thiosulfate (approx. 0M to approx. 0.25M) by iodometry or high performance liquid chromatography (HPLC), polythionates (approx. 0M to approx. 0.01M) by thin layer chromatography (TLC), dithionite (searched for but not detected in process solutions) by polarography or TLC, bisulfite (approx. 0M to 0.2M) by iodometry, sulfate (approx. 0M to 1M) by a Bureau-developed gravimetric procedure, citric acid (approx.more » 0M to 0.5M) by titration or visible colorimetry, glycolic acid (approx. 0M to 1M) by HPLC, sodium (approx. 1.5M) by flame photometry, and chloride by argentometric titration.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []