An Intrinsically Switched Tunable CABW/CFBW Bandpass Filter

2021 
In this paper, a novel intrinsically switched tunable bandpass filter based on a dual-mode T-shaped varactor-loaded resonator is presented. The varactors loaded in the T-shaped resonator are capable of efficiently tuning the resonant frequencies of the even and odd modes, as well as the transmission-zero frequency. Without any additional RF switches, the passband of the filter can be intrinsically switched off by adjusting the transmission zero to the resonant frequencies. In the switch-on state, the constant absolute bandwidth (CABW) or constant fractional bandwidth (CFBW) passband can be achieved by controlling the frequency space between the two resonances. For a demonstration, a 0.8–1.1 GHz intrinsically switched tunable bandpass filter with 74 MHz CABW or 8.5% CFBW was fabricated and tested. In the whole operating band with |S11| < 10 dB, the insertion losses for CABW and CFBW are better than 3.3 dB and 3 dB, respectively, and the isolations are better than 20 dB in the switch-off state. The measured results have a good agreement with simulated results, which verifies the design theory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []