Molecular-scale 3D visualisation of the cardiac ryanodine receptor clusters and the molecular-scale fraying of dyads

2021 
Clusters of ryanodine receptor calcium channels (RyRs) form the primary molecular machinery in cardiomyocytes. Various adaptations of super-resolution microscopy have revealed intricate details of the structure, molecular composition and locations of these couplons. However, most optical super-resolution techniques lack the capacity for three-dimensional (3D) visualisation. Enhanced Expansion Microscopy (EExM) offers resolution (in-plane and axially) sufficient to spatially resolve individual proteins within peripheral couplons and within dyads located in the interior. We have combined immunocytochemistry and immunohistochemistry variations of EExM with 3D visualisation to examine the complex topologies, geometries and molecular sub-domains within RyR clusters. We observed that peripheral couplons exhibit variable co-clustering ratios and patterns between RyR and the structural protein, junctophilin-2 (JPH2). Dyads possessed sub-domains of JPH2 which occupied the central regions of the RyR cluster, whilst the poles were typically devoid of JPH2 and broader, and likely specialise in turnover and remodelling of the cluster. In right ventricular myocytes from rats with monocrotaline-induced right ventricular failure, we observed hallmarks of RyR cluster fragmentation accompanied by similar fragmentations of the JPH2 sub-domains. We hypothesise that the frayed morphology of RyRs in close proximity to fragmented JPH2 structural sub-domains may form the primordial foci of RyR mobilisation and dyad remodelling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []