Controlled drug release from gels using surfactant aggregates: I. Effect of lipophilic interactions for a series of uncharged substances

2001 
Abstract Gels are often used for the delivery of drugs because they have rheological properties that will give a long residence time. Most pharmaceutical gels consist of ∼99% water and a polymer matrix that will not hinder the release of drugs with a small molecular weight. To fully take advantage of the residence time, it is necessary to have a sustained drug release. In this paper it is suggested that surfactant micelles can be used to control the release from gels. The in vitro release under physiological conditions of five parabens from four different poly(acrylic acid) gels (Carbopol 934, 940, 1342) and one gellan gum (Gelrite) gel was measured using a USP dissolution bath modified for gels, and the diffusion coefficients were calculated. The diffusion coefficient of uncharged parabens was generally lower in gels with lipophilic modifications, such as C1342, and the greatest effect was seen for butylparaben, with a diffusion that was 25% lower than that in C934 (lacking lipophilic modification). Addition of surfactant micelles to gels delayed the release of all the uncharged drugs in all types of gels studied. The slowest release was seen for butylparaben in a lipophilically modified gel with micelles present. The diffusion coefficient in such a system was almost 30 times smaller than that in C934 without micelles. © 2001 Wiley‐Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1216–1225, 2001
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    51
    Citations
    NaN
    KQI
    []