Preparation and Characterization of a Novel Controlled-Release Nano-Delivery System Loaded with Pyraclostrobin via High-Pressure Homogenization.

2020 
BACKGROUND: The development of efficient and safe green pesticides is a scientific strategy to alleviate current pesticide residues, environmental pollution, and threats to non-target organisms. Pesticide controlled-release formulations (CRFs) have attracted wide attention because they can control the rate of release of active ingredients and prolong the effective duration. In particular, nanoscale pesticide sustained-release systems have excellent biological activity and distribution performance because of their small particle size. Some technical difficulties remain in obtaining nanoscale CRFs. RESULTS: We successfully fabricated pyraclostrobin nanosphere CRF by combining high-pressure homogenization technology and emulsion-solvent evaporation methods. The pyraclostrobin nanospheres had a uniform spherical shape with a mean particle size of 450 nm and polydispersity index of less than 0.3. The pyraclostrobin loading capacity reached 53.6%, with excellent storage stability. The contact angle of nanospheres on cucumber leaf surfaces demonstrated that it had good wettability. Compared with pyraclostrobin technical and commercial formulations, the nanosphere systems showed a significantly sustained release of pyraclostrobin for longer (up to 250 h). A preliminary bioassay against Penicillium ochrochloron showed that the bioactivity and long-term efficiency of pyraclostrobin nanospheres were superior to those of the commercial formulation. CONCLUSION: This research introduced a simple, fast, expandable method for preparing pyraclostrobin nanospheres. The results showed that pyraclostrobin nanospheres could prolong the duration of pesticide efficacy and enhance bioactivity. Furthermore, this technology provides a platform for scale-up production of nano-scale pesticide CRFs. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    3
    Citations
    NaN
    KQI
    []