Sleep Apnea Detection Based on Rician Modeling of Feature Variation in Multiband EEG Signal

2019 
Sleep apnea, a serious sleep disorder affecting a large population, causes disruptions in breathing during sleep. In this paper, an automatic apnea detection scheme is proposed using single lead electroencephalography (EEG) signal to discriminate apnea patients and healthy subjects as well as to deal with the difficult task of classifying apnea and nonapnea events of an apnea patient. A unique multiband subframe based feature extraction scheme is developed to capture the feature variation pattern within a frame of EEG data, which is shown to exhibit significantly different characteristics in apnea and nonapnea frames. Such within-frame feature variation can be better represented by some statistical measures and characteristic probability density functions. It is found that use of Rician model parameters along with some statistical measures can offer very robust feature qualities in terms of standard performance criteria, such as Bhattacharyya distance and geometric separability index. For the purpose of classification, proposed features are used in K Nearest Neighbor classifier. From extensive experimentations and analysis on three different publicly available databases it is found that the proposed method offers superior classification performance in terms of sensitivity, specificity, and accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    18
    Citations
    NaN
    KQI
    []