ADSORPTION OF COBALT ONTO GRAPHITE NANOCARBON–IMPREGNATED ALGINATE BEADS: EQUILIBRIUM, KINETICS, AND THERMODYNAMICS STUDIES

2014 
A novel adsorbent was developed impregnating graphite nanocarbon (GNC) into alginate beads (AB) for efficient cobalt (Co(II)) removal from an aqueous solution. Physicochemical and spectroscopic properties of graphite nanocarbon–impregnated alginate beads (ABGNC) were characterized and compared with those of AB. Co(II) adsorption on ABGNC was quantitatively evaluated by determining kinetics and thermodynamics parameters. The Co(II) adsorption capacity onto ABGNC was highest at neutral pH condition. Increasing the temperature from 288 to 318 K resulted in a 2.5-fold higher Co(II) adsorption onto AB, while thermal dependence of Co(II) adsorption on ABGNC was not found. Kinetic studies showed an applicability of the pseudo-second-order kinetic model for both AB and ABGNC. Monolayer adsorption was the dominant mechanism of Co(II) adsorption on both AB and ABGNC. Thermodynamic studies revealed that Co(II) adsorption was an endothermic and spontaneous process. Positive values of entropy indicate randomness in so...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    21
    Citations
    NaN
    KQI
    []