Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes

2013 
Periodic arrays of n-GaAs nanowires have been grown by selective-area metal–organic chemical-vapor deposition on Si and GaAs substrates. The optical absorption characteristics of the nanowire-arrays were investigated experimentally and theoretically, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one-electron, reversible, redox species in non-aqueous solvents. The radial semiconductor/liquid junction in the nanowires produced near-unity external carrier-collection efficiencies for nanowire-array photoanodes in contact with nonaqueous electrolytes. These anodes exhibited overall inherent photoelectrode energy-conversion efficiencies of � 8.1% under 100 mW cm � 2 simulated Air Mass 1.5 illumination, with open-circuit photovoltages of 590 � 15 mV and short-circuit current densities of 24.6 � 2.0 mA cm � 2 . The high optical absorption, and minimal reflection, at both normal and off-normal incidence of the GaAs nanowire arrays that occupy <5% of the fractional area of the electrode can be attributed to efficient incoupling into radial nanowire guided and leaky waveguide modes. Broader context Due to the voltage requirements to produce fuels from sunlight, water, and CO2 as the inputs, two light-absorbing materials, with band gaps of 1.7 eV and 1.1 eV, respectively, are attractive as the foundation for high-efficiency articial photosynthesis. The integration of materials with 1.7 and 1.1 eV band gaps is, however, very challenging. Accordingly, a nanowire-growth strategy has been developed to integrate single crystal III–V nanowires (e.g. GaAs) with highly mismatched Si substrates. In this work, GaAs nanowire arrays grown on Si were studied using a non-destructive contact method involving non-aqueous photoelectrochemistry. The approach has allowed us to understand the interplay of nanowire growth with the optical absorption and electrical properties of such systems, and will aid in the design and optimization of nanowire-based systems for solar energy-conversion applications. Photoelectrolysis of water for the production of renewable H2 from sunlight faces a constraint in that a potential difference of 1.23 V is required thermodynamically to sustain the watersplitting reaction under standard conditions. In an integrated photoelectrochemical system for water splitting, the operating voltage produced by the light absorber should exceed the sum of
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    90
    Citations
    NaN
    KQI
    []