Green Nanocomposites Based on Functionalized Cellulose Nanocrystals: A Study on the Relationship between Interfacial Interaction and Property Enhancement

2014 
Functionalized cellulose nanocrystals (PHCNs) were synthesized by grafting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) onto cellulose nanocrystals (CNCs). The resultant PHCNs with high loading levels were uniformly dispersed into a PHBV matrix to produce fully biodegradable nanocomposites, which showed superior mechanical performance and thermal stability. Compared with those of neat PHBV, the tensile strength, Young’s modulus, and elongation at break of the nanocomposites with 20 wt % PHCNs were enhanced by 113%, 95%, and 17%, respectively. Meanwhile, the initial decomposition temperature (T0), temperature at 5% weight loss (T5%), maximum decomposition temperature (Tmax), and complete decomposition temperature (Tf) increased by 29.6, 23.9, 34.7, and 37.0 °C, respectively. This improvement was primarily ascribed to uniform dispersion of the PHCNs and to strong interfacial adhesion between filler and matrix due to the chain entanglements, cocrystallization, and hydrogen bonding interactions. Moreov...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    66
    Citations
    NaN
    KQI
    []