Chapter Two – Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination

2017 
Abstract In order to promote an efficient humoral immune response, germinal center B cells modify both the antigen recognition and effector domains by programmed genetic alterations of their antibody genes. To do so, B cells use the enzyme activation-induced deaminase (AID), which transforms deoxycytidine into deoxyuridine at the immunoglobulin genes, triggering mutagenic DNA repair. Data accumulated during the past decade have significantly advanced our understanding of how AID activity is regulated and preferentially targeted to the immunoglobulin genes. There is also a better understanding of the ways by which AID-catalyzed uracil is recognized and the ensuing downstream processing underpinning the mechanisms of somatic hypermutation and class switch recombination. Here, we critically review these advances in the context of their relevance for the humoral immune response. A detailed understanding of these molecular mechanisms is paramount to uncover the basis of B cell intrinsic immunodeficiency, as well as to suggest tools and strategies that might allow boosting antibody gene diversification in the context of immunizations or infections that require the elicitation of rare or highly mutated antibody variants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    239
    References
    132
    Citations
    NaN
    KQI
    []