Phosphorylation and SUMOylation of CRMP2 regulate the formation and maturation of dendritic spines

2018 
Abstract The posttranslational modifications of CRMP2 play an important role in axon outgrowth, cell polarization and dendritic morphogenesis. However, whether CRMP2 and its posttranslational modifications are involved in dendritic spine development specifically is not completely clear. Here, we show that CRMP2 can promote the formation and maturation of dendritic spines in cultured hippocampal neurons. Overexpression of CRMP2 results in an increase in the density of spines especially the mushroom-shape spines. The amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) are both enhanced and the intensity of PSD95 is strengthened in the neurons with CRMP2 overexpression. Furthermore, dephosphorylation of CRMP2 at Thr514 and deSUMOylation at Lys374 can further promote the formation and maturation of dendritic spines, whereas, no cross-talk is found between these two posttranslational modifications in the regulation of dendritic spine formation and maturation. Taken together, our data support a model in which phosphorylation and SUMOylation modification of CRMP2 independently promote the formation and maturation of dendritic spines and participate in the process of dendritic spine plasticity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    13
    Citations
    NaN
    KQI
    []