Unravelling the Stability and Capsid Dynamics of the Three Virions of Brome Mosaic Virus Assembled Autonomously In Vivo

2019 
Viral capsids are dynamic assemblies that undergo controlled conformational transitions to perform various biological functions. The replicated three-molecule RNA progeny of Brome mosaic virus (BMV) are packaged by a single capsid protein (CP) into three types of morphologically indistinguishable icosahedral virions with T=3 quasi-symmetry. Type 1 (B1V) and type 2 (B2V) virions respectively package genomic RNA1 or RNA2, while type 3 (B3+4V) co-packages genomic RNA3 (B3) and its sub-genomic RNA4 (B4). In this study, the application of a robust Agrobacterium-mediated transient expression system allowed us to assemble each virion type separately in planta. Physical and biochemical approaches analyzing the morphology, size, and electrophoretic mobility failed to distinguish between the virion types, so protease-based mapping experiments were used to analyze the conformational dynamics of the individual virions. The crystallographic structure of the BMV capsid shows four trypsin-cleavage sites (K65, R103, K111 and K165 on the A, B and C subunits) exposed on the exterior of the capsid. Irrespective of the digestion time, while retaining their capsid structural integrity, B1V and B2V released only two peptides involving amino acids 2-8 and 16-22 from the N-proximal arginine-rich RNA binding motif. In contrast, B3+4V capsids are unstable to trypsin, releasing several peptides in addition to the four sites predicted to be exposed on the capsid exterior. These results, demonstrating qualitatively different dynamics for the three types of BMV virions, suggest that the different RNA genes they contain may have different translational timing and efficiency and may even impart different structures to their capsids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []