Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release

2020 
We have developed a reproducible and facile one step strategy for the synthesis of doxorubicin loaded magnetoliposomes by using a thin-layer evaporation method. Liposomes of around 200 nm were made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and iron oxide nanoparticles (NPs) with negative, positive, and hydrophobic surfaces that were incorporated outside, inside, or between the lipid bilayers, respectively. To characterize how NPs are incorporated in liposomes, advanced cryoTEM and atomic force microscope (AFM) techniques have been used. It was observed that only when the NPs are attached outside the liposomes, the membrane integrity is preserved (lipid melt transition shifts to 38.7 °C with high enthalpy 34.8 J/g) avoiding the leakage of the encapsulated drug while having good colloidal properties and the best heating efficiency under an alternating magnetic field (AMF). These magnetoliposomes were tested with two cancer cell lines, MDA-MB-231 and HeLa cells. First, 100% of cellular uptake was...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    21
    Citations
    NaN
    KQI
    []