Quantum Confinement of Surface Electrons by Molecular Nanohoop Corrals

2016 
Quantum confinement of two-dimensional surface electronic states has been explored as a way for controllably modifying the electronic structures of a variety of coinage metal surfaces. In this Letter, we use scanning tunneling microscopy and spectroscopy (STM/STS) to study the electron confinement within individual ring-shaped cycloparaphenylene (CPP) molecules forming self-assembled films on Ag(111) and Au(111) surfaces. STM imaging and STS mapping show the presence of electronic states localized in the interiors of CPP rings, inconsistent with the expected localization of molecular electronic orbitals. Electronic energies of these states show considerable variations correlated with the molecular shape. These observations are explained by the presence of localized states formed due to confinement of surface electrons by the CPP skeletal framework, which thus acts as a molecular electronic “corral”. Our experiments suggest an approach to robust large-area modification of the surface electronic structure v...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    15
    Citations
    NaN
    KQI
    []