The Dissociation Rate of Acetylacetonate Ligands Governs the Size of Ferrimagnetic Zinc Ferrite Nanocubes

2019 
Magnetic nanoparticles are critical to a broad range of applications from medical diagnostics and therapeutics to biotechnological processes and single-molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25 °C tunes the size of ferrimagnetic ZnxFe3–xO4 nanocubes from 25 to 100 nm, respectively. We show that degassing at 90 °C nearly entirely removes acetylacetone ligands from the reaction, which results in an early formation of monomers and a reaction-controlled growth following LaMer’s model toward small nanocubes. In contrast, degassing at 25 °C only partially dissociates acetylacetone ligands from the metal center and triggers a delayed formation of monomers, which leads to intermediate assembled structures made of tiny irregular crystallites and an eventual formation...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    4
    Citations
    NaN
    KQI
    []