Roof plane extraction from airborne lidar point clouds

2017 
Planar patches are important primitives for polyhedral building models. One of the key challenges for successful reconstruction of three-dimensional 3D building models from airborne lidar point clouds is achieving high quality recognition and segmentation of the roof planar points. Unfortunately, the current automatic extraction processes for planar surfaces continue to suffer from limitations such as sensitivity to the selection of seed points and the lack of computational efficiency. In order to address these drawbacks, a new fully automatic segmentation method is proposed in this article, which is capable of the following: 1 processing a roof point dataset with an arbitrary shape; 2 robustly selecting the seed points in a parameter space with reduced dimensions; and 3 segmenting the planar patches in a sub-dataset with similar attributes when region growing in the object space. The detection of seed points in the parameter space was improved by mapping the accumulator array to a 1D space. The range for region growing in the object space was reduced by an attribute similarity measure that split the roof dataset into candidate and non-candidate subsets. The experimental results confirmed that the proposed approach can extract planar patches of building roofs robustly and efficiently.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    24
    Citations
    NaN
    KQI
    []